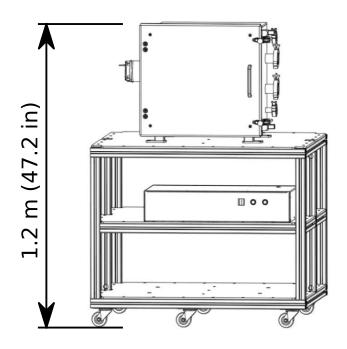
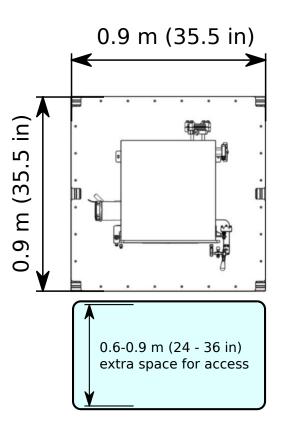


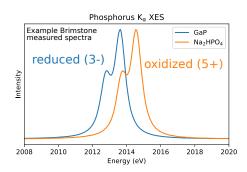
High-Performance, User-Friendly, Lab-Based Tender XES Spectrometer

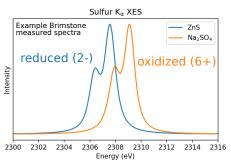
Dispersive refocusing Rowland geometry

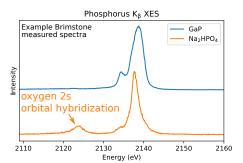

Product Specifications

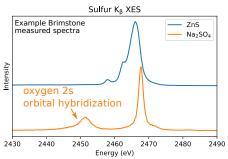

Energy Range	2–5 keV, depending on choice of crystal analyzers
Resolving Power (E/ΔE)	~4000 (0.5 eV @ 2 keV)
Bragg Angle Range	Standard operation 48–80 degrees.
X-ray Tube	100-W XRF-style, air-cooled tube with choice of anode material (Pd or W); 35 kV maximum.
X-ray Crystal Analyzer	Cylindrically-bent crystal analyzers (CBCAs) with 10-cm radius of curvature.

Detector	Designed to work with the easyXAFS kromo-TX1 $^{\text{TM}}$ x-ray camera.
Sample Turret	Standard operation with motorized, multi-sample turret for programmable studies.
Sample Environment	Flushed with 1 atm helium during measurement.
Sample size	Active area: approx. 2×5 mm ² Mount area: 10×10mm ²
Software	Python-based platform with user-friendly GUI.
Required Utilities	Requires only standard wall outlet. 110-220 V/50-60 Hz, 1000-W


Dimensions




Example Data


Tender Kα XES:
Oxidation state sensitivity

Tender Kβ (Valence-to-core) VTC-XES: Direct probe of valence electronic structure

